1- Nanoscale materials modelling

1a- Quantum, phonon and spin transport

Any nanoscale device consists of two or more electrodes (leads) connected to a scattering region. The electrodes are perfect waveguides where electrons and phonons can transmit without any scattering. The main scattering occurs either at the junction to the leads or inside the scattering region. The goal is to understand the electrical and vibrational properties of nano and molecular junctions where a nanoscale scatter or a molecule is located between electrodes. In principle, the molecule could be coupled to the electrodes with a weak or strong coupling strength. However, in most cases the coupling is weak. There are different approaches to study the electronic and vibrational properties of the junctions though, our main focus is on "scattering theory" and "master equation" approaches.

1b- Environmental effects

The electron, phonon and spin transport in a nanoscale junction could also be investigated in the absence or presence of surroundings, such as an electric field (gate and bias voltages or local charge), a magnetic field, a laser beam or a molecular environment (water, gases, biological spices, donors and acceptors, etc).

2- Molecular electronics

2a- Quantum and phonon interference

Electrons and phonons (i.e. vibrations due to heat) both behave quantum-mechanically like waves and so they can exhibit interference. When a single molecule is attached to metallic electrodes, de Broglie waves of electrons entering the molecule from one electrode and leaving from the other form a complex interference pattern inside the molecule. These patterns called "quantum interference" could be utilized to optimize the single-molecule device performance.

It turns out that constructive or destructive interference of electrons and phonons within individual organic molecules can be engineered precisely by carefully selecting the connection of the molecule to external electrodes and the addition of various atomic groups to the molecule.

2b- Thermoelectricity

For many years, the attraction of the single-molecule electronics has stemmed from their potential for sub-10nm electronic switches and rectifiers and from their provision of sensitive platforms for single-molecule sensing. In the recent years, their potential for removing heat from nanoelectronic devices (thermal management) and thermoelectrically converting waste heat into electricity has also been recognized. The efficiency of a thermoelectric device for power generation is characterized by the dimensionless figure of merit ZT = GS^2T/κ, where G is the electrical conductance, S is the thermopower (Seebeck coefficient), T is temperature, and κ is the thermal conductance. Therefore, low-κ materials are needed for efficient conversion of heat into electricity, whereas materials with high κ are needed for thermal management.

Inorganic materials for thermoelectricity have been extensively studied and have delivered ZT values as high as 2.2 at temperatures over 900 K. However, this level of efficiency does not meet the requirements of current energy demands, and furthermore, the materials are difficult to process and have limited global supply. Organic thermoelectric materials may be an attractive alternative, but at present the best organic thermoelectric material with a ZT of 0.6 in room temperature is still not competitive with inorganics. In an effort to overcome these limitations, single organic molecules and self-assembled monolayers have attracted recent scientific interest, both for their potential as room temperature thermoelectric materials and for thermal management.

2c- Biological sensing

DNA sequencing (sensing the order of bases in a DNA strand) is an essential step toward personalized medicine for improving human health. Despite recent developments, conventional DNA sequencing methods are still expensive and time consuming. Therefore, the challenge of developing accurate, fast, and inexpensive, fourth-generation DNA sequencing alternatives has attracted huge scientific interest. All molecular based biosensors rely on a molecular recognition layer and a signal transducer, which converts specific recognition events into optical, mechanical, electrochemical, or electrical signals.

One implementation of this approach is based on measurement of the variation in the ionic current through a solid-state or biological nanopore, due to the translocation of a DNA strand through the pore. However, the current leakage through such pores, low signal-to-noise ratios, and poor control of the speed of the strand through the pore create significant obstacles. To overcome the key technical problems, we study an alternative strategy that involves measuring changes in the electrical conductance of the membrane e.g. containing the pore, rather than variations in an ionic current passing through the pore.

2d- Spintronic

Coherent manipulation of electron spins is essential for quantum and neuromorphic computing and data storage and transfer. We showed recently that the spin coherence time in the range of microseconds at room temperature is possible in bottom up molecular nanoribbons with well-defined zigzag edges decorated with organic radical molecules that bear electron spins. Our focus is on studying spin manipulation in magnetic molecules and molecular nanoribbons and the interplay between their transport and magnetic properties.

2e- Optoelectronics

One of the main focuses of nanoscale electronics is on switching electrical conductance by an external stimulus such as an external electric field, redox chemistry, or light. In the latter, the electrical current is switched on or off in photochromic molecules in the presence of light or a change in its intensity.

2f- Piezoelectric

In Piezoelectric molecules, electrical current is generated due to the deformation of molecule. This was observed recently in 4,16-dibromo[2.2]paracyclophane and heptahelicene derived molecules. To enhance the Piezoelectric response, molecules with low conductance and a high dipole moment are required.

3- Two dimensional materials

3a- van-der Waals heterostructures

3b- Graphene electrodes

3c- Bottom-up graphene nanoribbons